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Abstract

Yield-line analysis proves a powerful and convenient method for establishing the peak load capacity of reinforced
concrete slabs. Its application requires compatible mechanisms to be postulated, comprising rigid regions intersecting at
yield-lines where relative rotations may occur. A systematic procedure is described for checking the compatibility of
postulated yield-line mechanisms. The similarity between this method and equilibrium requirements in a plane pin-
jointed truss is highlighted, and an analogy between yield-line mechanism compatibility and statical determinacy in pin-
jointed trusses is established. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Yield-line analysis is an upper bound method of limit analysis which enables an estimate of the ultimate
or peak load capacity of a slab to be derived, assuming a flexural mode of failure and perfect plasticity. The
method is applied by postulating a compatible mechanism of displacement (or velocity) comprising rigid
regions intersecting at yield-lines where relative rotations may occur. An estimate of the ultimate load then
follows from the upper bound theorem of limit analysis by equating the rate of internal energy dissipation
in the yield-lines to the rate of work done by the applied loading as the slab deforms in this mechanism.
The method was originally pioneered by Johansen (1962) and is extensively treated by Park and Gamble
(1980).

One problem with yield-line theory is that “mechanisms” are occasionally proposed which turn out to be
geometrically incompatible and therefore illegitimate. In this paper, a systematic procedure for checking the
compatibility of yield-line mechanisms is presented. In developing this procedure, it is convenient to rec-
ognise two compatibility requirements that must be satisfied by yield-line mechanisms. Firstly, the ar-
rangement of yield-lines must be such that a pattern of displacements can occur through rotation of the
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yield-lines alone with the regions between the yield-lines remaining rigid; here this condition is termed the
rotational compatibility requirement for a yield-line mechanism. Secondly, this pattern of displacements
must be compatible with the boundary conditions of the problem, which are generally conditions on dis-
placement or rotation at supports. For many yield-line mechanisms, the requirement for compatibility with
boundary conditions can be seen to be satisfied by inspection.

A method is first presented for checking that the rotational compatibility requirement of a yield-line
mechanism is satisfied. A comparison of this method and the requirements for equilibrium in pin-jointed
trusses leads to an analogy between the compatibility of a yield-line mechanism and the existence of states
of self-stress in a pin-jointed truss whose members lie along the hinge lines of the mechanism. This method
is then generalised to address both the rotational compatibility requirement and the requirement for
compatibility with boundary conditions. This general method is suitable for cases where boundary con-
ditions cannot be seen to be satisfied by inspection and can be particularly relevant when slabs have free
edges or internal supports.

Yield-line mechanisms in plane slabs only are considered and small deflections are assumed. Since the
question of compatibility is quite independent of the strength actually developed at yield-lines, no dis-
tinction needs be drawn between yield-lines with strength and other lines of discontinuity in rotation be-
tween portions of the slab or surroundings (such as occur at simply supported edges with no flexural
strength). Here, the term “‘yield-line” covers all such lines of discontinuity in rotation, and all points where
yield-lines meet are termed “nodes”. Of course, each rigid slab portion will have an axis of rotation, which
may or may not coincide with one of the surrounding yield-lines.

2. Rotational compatibility requirement for yield-line mechanisms

Since yield-line mechanisms comprise rigid regions intersecting at yield-lines, between nodal points
where the yield-lines themselves intersect, which must be straight and have constant rotation. The com-
patibility of a yield-line mechanism may then be checked by ensuring that the following conditions are
satisfied at every nodal point:

i:()i sing, =0,
i=1

; (1)
Z@i cos¢, =0,
i=1

where 7 is the number of yield lines which meet at the node; 0;, the rotations in the yield-lines, and ¢,, the
anti-clockwise angles between some reference axis in the slab plane and the yield-lines. A consistent sign
convention is required to account for the sense of the rotations in the yield-lines, i.e. whether they are
hogging or sagging. In this paper, hogging is considered positive.

These criteria ensure that the vector sum of the yield-line rotations at each nodal point is zero. Such an
approach is valid since small rotations are assumed. If a circular path is followed at a small radius around a
nodal point then, as each yield-line is crossed, the difference in slope in any chosen direction between the
rigid zones on either side of the yield-line will be equal to the component of the yield-line rotation in that
direction, assuming small rotations. Clearly, if a complete circular path is followed then the total difference
in slope must be zero and therefore the sum of the components of the rotations of all the yield-line which
meet at the node, resolved in any chosen direction, must also equal zero. Eq. (1) ensures that this re-
quirement is satisfied.
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Fig. 1. Polygon of forces.

3. Equilibrium requirements for pin-jointed trusses or frames

In the analysis of two-dimensional pin-jointed trusses or frames (with straight members), equilibrium is
achieved by ensuring that the polygon of forces throughout the truss is closed (Fig. 1). Assuming the truss
members have no self-weight and that members are not loaded between joints, this condition leads to the
requirements that, between pin-joints or nodes, bar forces must be constant and that, at every node, the
following equations must be satisfied:

S Tising, =0,
i=1

" 2)
ZTz cos¢g, =0,
=1
where # is the number of bars which meet at the node; T}, the bar tensions, and ¢;, the anti-clockwise angles
between some reference axis in the truss plane and the bars.

By comparing Egs. (1) and (2), it is clear that an analogy exists between the compatibility requirements
for yield-line mechanisms and equilibrium requirements for pin-jointed trusses, with yield-line rotations in
the former being replaced by bar tensions in the latter.

That ‘static-geometric analogies’ of this form exist has been known for some time. Calladine (1983)
provides a more general exposition of which the particular analogy shown above is a special case, although
it does not seem to have been highlighted before in this context. Furthermore, it is possible to extend this
particular analogy to enable methods available for finding possible states of self-stress in pin-jointed trusses
to be used to establish whether yield-line mechanisms satisfy the requirement for rotational compatibility.

4. Analogy between states of self-stress in pin-jointed trusses and the rotational compatibility requirement for
yield-line mechanisms

Before exploring the analogy between states of self-stress in pin-jointed trusses and the compatibility of
yield-line mechanisms, it is helpful to introduce the term “‘equivalent pin-jointed truss”. Such a truss is de-
veloped from a yield-line mechanism by replacing the yield-lines with truss members and the intersection points
between yield-lines with pin joints. The members in the equivalent pin-jointed truss have no self-weight.

For a yield-line mechanism to satisfy the requirement for rotational compatibility, it is necessary and
sufficient for there to be a system of rotations constant along each yield-line which satisfy Eq. (1) at every
intersection point. Recognising the analogy between the rotational compatibility requirement for yield-line
mechanisms and the equilibrium requirements for pin-jointed trusses, it follows that for a yield-line
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Table 1
Analogy between pin-jointed trusses and yield-line mechanisms
Equivalent pin-jointed truss Yield-line mechanism
No state of self-stress Incompatible
Single state of self-stress Compatible with single degree of freedom
n States of self-stress Compatible with n degrees of freedom

mechanism to be compatible its equivalent pin-jointed truss must be capable of sustaining at least one self-
equilibrating system of bar forces (with no external load). Furthermore, it may be seen that the number of
degrees of freedom of a compatible yield-line mechanism is equal to the number of independent states
of self-stress in its equivalent pin-jointed truss. Thus, for a yield-line mechanism to have a single degree of
freedom, its equivalent pin-jointed truss must have a single state of self-stress.

The number of degree of freedom of a yield-line mechanism is relevant since, from the upper bound
theorem, it follows that for plane slabs, compatible yield-line mechanisms with more than one degree of
freedom can never generate lower critical collapse loads than yield-line mechanisms with a single degree of
freedom (i.e. mechanisms where, if the rotation in a single yield-line is specified, the rotation of all other
yield-lines follows uniquely). In general, therefore, only mechanisms with a single degree of freedom are of
interest when the load capacity of a plane slab is sought.

The analogy between the rotational compatibility of yield-line mechanisms and states of self-stress in
their equivalent pin-jointed trusses is summarised in Table 1.

5. States of self-stress in pin-jointed trusses

A systematic method for analysing indeterminate pin-jointed trusses is presented by Pellegrino and
Calladine (1986). Here, however, we are concerned only with a part of their more general solution since we
seek solely the states of self-stress which may be sustained by our equivalent pin-jointed truss; the number
of independent states of self-stress being equal to the number of degrees of freedom of the corresponding
yield-line mechanism and the tensions in each member corresponding to the yield-line rotations.

Suppose that an equivalent pin-jointed truss has » members and j joints, then, with reference to Fig. 2,
the equilibrium conditions at each joint can be written in matrix form as

A-t=0, (3)
where the equilibrium matrix, A, and the bar tensions vector, t, are given by
Qo (m) (n)
i . . . . . ] \
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and 1, is the tension in bar n.
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Fig. 2. Members connected at joint i in a pin-jointed truss.

In the equilibrium matrix, A, each column corresponds to a particular bar and two rows relate to each
joint since each joint generates two equilibrium equations. When a bar is not connected to a particular joint
then the rows relating to that joint will have a zero in the column corresponding to that bar.

The values of t which satisfy Eq. (3) correspond to the possible states of self-stress in the truss. Iden-
tifying these solutions for t is a problem of linear algebra for which simple solution procedures are available
(Strang, 1988); the values of t which satisfy Eq. (3) span the so-called nullspace of A and the number of
independent states of self-stress which can be sustained by the structure is given by br,, where r, is the rank
of the equilibrium matrix, A.

6. Examples

Five yield-line patterns are shown in Fig. 3 from which the relationship between their compatibility and
states of self-stress in the equivalent pin-jointed trusses may be observed. In each case, the outer yield-lines
connect to a rigid surrounding slab satisfying any boundary conditions. The number of members in the
equivalent pin-jointed trusses, rank of the equilibrium matrices, number of independent states of self-stress
and corresponding yield-line mechanism compatibilities are summarised in Table 2.

By considering the effect of increasing the length of any of the members in the equivalent truss corre-
sponding yield-line pattern 1, it is clear that no system of self-stress may be sustained by the structure and
the corresponding yield-line mechanism is not compatible. The addition of a further yield-line, as in
pattern 2, leads to a single redundancy in the equivalent pin-jointed truss and a compatible yield-line
mechanism.

Whilst patterns 3 and 4 comprise the same number of yield-lines and intersections, the former is not
compatible whilst the latter is. The difference arises because yield-line ¢f is parallel to bd and ae in pattern 4
whereas this is not the case in pattern 3. Thus, pattern 4 has one fewer independent “equilibrium” equations
than pattern 3 and the rank of its equilibrium matrix is reduced by one. The present approach can enable
such special cases to be found analytically; one method for achieving this is described in the following
section.

Pattern 5 clearly has two degrees of freedom, namely deflection of the central point with no rotation of
the central square of yield-lines; and no deflection of the central point but rotation of different sense in the
inner and outer diagonals. Its equivalent pin-jointed truss has two independent states of self-stress.
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Fig. 3. Examples.

Table 2
Examples
Yield-line pat- Equivalent pin-jointed truss Yield-line mechanism
tern (see Fig. 3) Number of Rank of equilib- Number of states Compatible Number of de-
members rium matrix of self-stress grees of freedom
1 5 5 0 No -
2 6 5 1 Yes 1
3 9 9 0 No -
4 9 8 1 Yes 1
5 16 14 2 Yes 2

7. Finding compatible yield-line mechanisms

Some arrangements of yield-lines satisfy the requirement for rotational compatibility irrespective of the
length of the individual yield-lines, e.g. pattern 2 in Fig. 3. However, for other topologies, only certain
special cases are compatible; whilst patterns 3 and 4 in Fig. 3 have the same topology, or arrangement of
yield-lines and joints, pattern 4 is compatible whereas pattern 3 is not. Such special cases can be found
analytically by examining the rank of the equilibrium matrix of the equivalent pin-jointed truss as illus-
trated by the following example. Alternatively, the same problem could be formulated as a generalised
eigenvector problem.

Consider the yield-line pattern shown in Fig. 4. The outer yield-lines connect to a rigid surrounding slab
satisfying any boundary conditions. The co-ordinates of intersections a,b,¢,d, and e and the y ordinate of f
are fixed, with values as shown. A value for the x ordinate of f, denoted by x, is sought such that the yield-
line mechanism is compatible and that the area of each of the rigid regions bounded by the yield-lines is
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d=(0,10) N f=(x,10)
® ©)
e=(5.8)
@ ) )
b=(5,2)
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a=(0,0) w ¢=(10,0)

Fig. 4. Yield-line pattern with x ordinate of node f unspecified.

greater than zero. The latter condition is used to eliminate states of self-stress in co-linear truss members
alone since these have no relevance in yield-line analysis.

The rank of the equilibrium matrix is unaffected by multiplying all the terms in one row or column by a
constant factor or by adding all the terms from one row to another. An investigation of the rank of the
equilibrium matrix A, given in Eq. (3), may therefore be simplified since the denominator of each term may
be cancelled to give a new matrix with the same rank as A. For the geometry shown in Fig. 4, this matrix
has nine columns, each corresponding to one of the nine members, and twelve rows since each of the six
joints generates two equilibrium equations. The order in which the joints are taken is, of course, arbitrary;
using the order a,c,b,e,d.f, this matrix is given by

[—10 0O 0 0 -5 0 0 O 0
0 -—-10 0 0 -2 0 0 O 0
10 0 0 10— 0 S5 0 O 0
0 0 60 —-10 0 -2 0 O 0
0 0 0 0 5.-5 0 0 0
0 0 0 0 2 2 -6 0 0
0 0 0 0 0 0 0 5 5-—x
0 0 0 0 o 0 6 -2 =2
0 0 —x 0 0o 0 0 =5 0
0 10 0 0 0 o0 0 2 0
0 0 x x—10 0 O O 0 x-5

L 0 0 0 10 0o 0 0 O 2

The matrix may be simplified further without altering its rank using Gaussian elimination (Strang, 1988).
With some exchanging of rows, this leads to
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-0 0 0 0 -5 0 0 0 0
0 -100 0 -2 0 0 0 0
0 0 x x—10 0 0 0 0 x—5
0 0 0 —10 0 -2 0 0 0
0O 0 0 0 5 -5 0 0 0
0O 0 0 0 0 4 —60 0
o 0 0 0 0 0 -30 2
o 0 0 0 0 0 0 5 5-x
0O 0 0 0 0 0 0 0 10-x
O 0 0 0 0 0 0 0 0
o 0 0 0 0 0 0 0 0
0o 0 0 0o 0 0 0 0 0 |

Clearly, for the majority of values of x, the equilibrium matrix is of full rank and therefore the corre-
sponding yield-line pattern is not compatible. Two special cases appear to be of interest however, namely
x =0 and 10. In the former case, the co-ordinates of joint f are identical to d, thus the area of the rigid
region def equals zero, violating one of the requirements for an acceptable solution in this example. In
the latter case no such complications arise; the rank of the equilibrium matrix is one less than the num-
ber of columns so this geometry corresponds to a compatible yield-line pattern with a single degree of
freedom.

8. Compatibility with boundary conditions

For some problems, it is not immediately clear whether postulated yield-line mechanisms satisfy the
requirement for compatibility with boundary conditions. This can be particularly relevant to problems
involving slabs with free edges or internal supports.

When slabs have free edges, it is frequently necessary to consider collapse mechanisms with yield-lines
that intersect these free edges. Such an example is illustrated in Fig. 5a. Whilst the rotational compatibility
criterion set out in Eq. (1) is a necessary condition for mechanisms of this type, it is not a sufficient con-
dition for compatibility. Furthermore, it is not immediately clear how the equivalent pin-jointed truss
should be constructed for such a case nor how boundary conditions (e.g. constraints at supports) should be
taken into account.

The mechanism will be compatible provided the yield-lines can be shown to form part of any equivalent
truss which extends beyond the slab boundaries but has members within the slab boundaries solely at the
yield-line locations and which has a state of self-stress giving rise to tensions in the members corresponding
to these yield-lines. In addition, constraints at the supports must not be violated by the resulting mecha-
nism. An equivalent pin-jointed truss that satisfies these requirements is illustrated in Fig. 5b.

A general approach is available, however, that is far more amenable to numerical analysis and which
enables the requirements for rotational compatibility and compatibility with the boundary conditions to be
considered together. The compatibility criterion set out in Eq. (1) is applied at any nodal points within the
slab boundaries, but no constraint is placed on the rotation of yield-lines where they intersect free edges.
Additional equations are then introduced to enforce the support constraints directly.

The yield-line mechanism shown in Fig. Sc will be used to illustrate this approach. The co-ordinates of
the intersections of the yield-lines and free edges of the slab, namely b, d and f, are fixed and the co-
ordinates of node i, denoted by (x;, y;), are sought such that the resulting yield-line mechanism is com-
patible and node i lies within the slab boundaries.
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Fig. 5. (a) Yield-line mechanism with yield-lines intersecting free edges, (b) equivalent pin-jointed truss with members extending beyond
slab boundaries, (c) yield-line mechanism with yield-lines intersecting free edges and position of node i unspecified, and (d) locus of
positions of node i to give compatible mechanisms.

Whilst it is possible to extend the static-geometric analogy, so that support constraints are considered as
equilibrium requirements in some fashion, such an approach becomes rather contrived and since it does not
serve to clarify the problem it is not pursued here. Instead, the actual rotations of the various rigid regions
and their displacements are used. For consistency, the yield-line rotations and their associated compatibility
criteria are therefore referred to as such rather than, by analogy, as “tensions” and “equilibrium” equa-
tions. Similarly, the “equilibrium” matrix, A, is replaced by the compatibility matrix, C, which now has
extra rows and columns to enforce the boundary conditions.

The slab supports place constraints on the rotations of the adjoining rigid-regions and their displace-
ment. A column support solely fixes the displacement at its location. A simple support fixes the displace-
ment at a point on the support and the axis of rotation of the adjoining rigid region. For a fixed support the
displacement and the rotation of the adjoining rigid region are fixed.

A single rigid region is chosen, in the present example the region bcdi, and assigned unknown rotational
components about the x and y axis denoted by 0, and 0,, as illustrated in Fig. 5c. In addition, the dis-
placement of a point chosen within this region is denoted by 0; in this example it is convenient to choose the
column support, ¢, so ¢ has a value of zero. It is now straightforward to determine the rotations of all other
rigid regions as linear functions of 0., 0, and the yield-line rotations since all rotations are assumed to be
small and may therefore be treated as vectors. Similarly, the displacement at any point in the slab can be
determined. The conditions that must be satisfied at the support locations may therefore be written as a set
of linear equations of the yield-line rotations, 0,, 0, and ¢.
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It is more convenient to use rotation coefficients instead of the yield-line rotations proper in these
equations, where the rotation coefficient for yield-line n, denoted by ,, is defined as

b= )

where L, is the length of yield-line and 0, its rotation. In the present example, the rotation coefficients of the
yield-lines id, if and ib are denoted ,, Y, and /5, respectively.

The set of linear equations which enforce the boundary conditions are developed by considering each of
the supports in turn. The component of the rotation of region abifgh about the y-axis must be zero since it
adjoins a simple-support which lies parallel to the x-axis. The component of rotation of this region about
the y-axis is given by the sum of the rotation of region bcdi about the y-axis, 0,, and the component of the
rotation of yield-line ib about the y-axis, thus,

0y = 3(» — ) = 0. (5a)

The displacement at the column support e and also at some point along the simple support, say /4, must also
be equal to zero, thus,

0+ 0,(x; —x.) = Oc(vi — o) + [0, — b (v = ya) [ (xe — 1) — [0 — 1 (xi — x4)](ve — 1) = 0, (5b)

0+ 0y(xi = xe) = 0 (i — ye) + [0y = 30 = 31) ] Oon — xi) = [0 — W3 (00 — x)] (04 — 32) = 0. (5¢)
As noted previously, the requirement that the displacement at support c is zero is enforced by

0=0. (5d)

The rotational compatibility criteria from Eq. (1), applied to node i, and the support condition criteria
given in Egs. (5a)-(5d) may be combined in matrix form as

C-0=0. (6)
Where in the present example, the compatibility matrix, C, and the vector 0 are given by
X — 6 X; — 10 X; 0 0 0
Cc— 0 0 yi—3 0 1 0
- |40 -4y, 0 0 0 10 0}’
0 0 5pi+3x—15 10 5 0
0 0 0 0 0 1

9:[‘//1 23 Z Hy 5]T-

The first two rows of the compatibility matrix, C, enforce Eq. (1) at node i. The remaining four rows
enforce the support condition criteria, namely Egs. (5a)—(5d).

Eq. (6) has the same form as Eq. (3) and may be solved in a similar manner. Conveniently, the nullspace
of C contains both the compatible yield-line rotation coefficients and the rotation of one of the rigid-regions
and its deflection at one point from which all other rotations and deflections follow.

Here, however, we seek solely to identify the co-ordinates of i such that the compatibility matrix is rank
deficient. This may conveniently be achieved by performing Gaussian elimination on the compatibility
matrix and then identifying cases where the product of the terms on its leading diagonal is equal to zero.
Such an approach leads to the condition that for the yield-line mechanism to be compatible

55x; — 270
YT Tex, — 90 (7)
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The locus of points satisfying this relationship and lying within the slab boundaries is shown in Fig. 5d. It is
of interest to note that two families of compatible mechanisms are identified; when i lies between d and f all
yield-lines have the same sense (i.e. all hogging or sagging), whereas when i lies between b and the simply
supported edge this is not the case.

When slabs are continuous over supports, yield-line mechanisms can be postulated in which supports lie
within the area bounded by the outermost yield-lines. The approach described above may readily be
adapted to such cases to enforce the conditions required at such internal supports.

9. Conclusions

A systematic method is presented for checking the compatibility of yield-line mechanisms and an
analogy between compatibility of yield-line mechanisms and states of self-stress in pin-jointed trusses is
highlighted. Applying the analogy, it becomes possible to use techniques developed to investigate states of
self-stress in pin-jointed trusses to determine whether yield-line mechanisms satisfy the requirement for
rotational compatibility. Furthermore, the approach allows the number of degrees of freedom of yield-line
mechanisms to be readily established. A development of the approach to account directly for boundary
conditions (or support constraints) has been presented.

The present approach should enable computational methods developed for problems of linear algebra,
and in particular those for analysing two dimensional pin-jointed frameworks, to be applied directly to
problems of yield-line mechanism compatibility.
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